N CAPHYQN

STL Algorithms
Principles and Practice

Victor Ciura - Technical Lead
Gabriel Diaconita - Senior Software Developer

February 2020

Agenda

Part 1: Containers and lterators Part 2: STL Function Objects and Utilities

[[l [B @ s e 7

Head Tail
o] [R B Pk e
27

[0 [2 B [4 51 6 7]

27 | 19| 27| 7

a Tail
o] [[6B o m
19 | 17 7 19 17 7
) N
Head Tail 1 d

STL Background

(recap prerequisites)

STL and Its Design Principles

Generic Programming

algorithms are associated with a set of common properties
Eg. op{ +, *, min, max } => associative operations => reorder operands
=> parallelize + reduction (std::accumulate)
find the most general representation of algorithms (abstraction)
exists a generic algorithm behind every WHILE or FOR loop

natural extension of 4,000 years of mathematics

Alexander Stepanov (2002),

https://www.youtube.com/watch?v=COuHLky7E2Q

STL and Its Design Principles

Generic Programming

Egyptian multiplication ~ 1900-1650 BC
Ancient Greek number theory

Prime numbers

Euclid’'s GCD algorithm

Abstraction in mathematics

Deriving generic algorithms

Algebraic structures

Programming concepts

Permutation algorithms

Cryptology (RSA) ~ 1977 AD

ALEXANDER A. [STEPA
DANIEL E. RO$ '(

MATH EMATICS

GENERIC
PROGRAMMING

STL Data Structures

they implement whole-part semantics (copy is deep - members)

2 objects never intersect (they are separate entities)

2 objects have separate lifetimes

STL algorithms work only with Regular data structures

Semiregular = Assignable + Constructible (both Copy and Move operations)
Regular = Semiregular + EqualityComparable

=> STL assumes equality is always defined (at least, equivalence relation)

»
Video: "Reqular Types and Why Do | Care"

STL lterators

Iterators are the mechanism that makes it possible to decouple algorithms from containers.
Algorithms are template functions parameterized by the type of iterator, so they are not restricted
to a single type of container.

An iterator represents an abstraction for a memory address (pointer).

An iterator is an object that can iterate over elements in an STL container or range.

All containers provide iterators so that algorithms can access their elements in a standard way.

STL lterators

Ranges

STL ranges are always semi-open intervals: [b, e)
Get the beginning of a range/container: v.begin () ; or begin (v) ;
You can get a reference to the first element in the range by: *v.begin() ;

You cannot dereference the iterator returned by: v.end () ; or end(v) ;

rend() ri rbegin()
. v .
1 2 3 4 5

STL lterators

Iterate a collection (range-for)

std::array<int, 5> v = {2, 4, 6, 8, 10};

for (auto it = v.begin(); it !'= v.end(); ++it) { ..}

auto it v.begin () ;
auto end = v.end();
for(; it != end; ++it) { ..}

for (auto val : v) { .. }

https://cppinsights.io

C-style iteration vs STL Iterators
=] Reuse existing code so that is prints letters in reverse order.

The C way

CODE

vector<char> letters = { 'S’,
for (unsigned int n
cout << letters[n] <<

ITI, ILI };
0; n < letters.size(); ++n)

non,
3

L, T, st) ,,//,

letters.size(); i >= 0; ++4i)

vector<char> letters
for (unsigned int i
cout << letters[n] <«

LI [
3

Can you spot any issues with

this code?

N

OUTPUT
STL
. Out of bounds memory error
Because of signed integer underflow
?77?

Out of bounds memory error.
We need the decrement operator

Introducing a bug. We're skipping the ‘'S’

Off-by-one error. We need to start from size() - 1

Old code forgotten during refactoring.
Compiler will catch this

—o

C-style iteration vs STL Iterators
=] Reuse existing code so that is prints letters in reverse order.

The C way
CODE OUTPUT
vector<char> letters = { 'S', 'T', 'L' };
for (unsigned int n = @; n < letters.size(); ++n) STL
cout << letters[n] << " ";
vector<char> letters = { 'L', 'T', 'S' }; STL
for (unsigned int i = letters.size() - 1; i >= 0; --i)
{
cout << letters[i] << " ";
if (i == @) break;
}

C-style iteration vs STL Iterators
=] Reuse existing code so that is prints letters in reverse order.

The STL Iterators way

CODE

vector<char> letters = { 'S", 'T', 'L' };
for (auto i = letters.begin(), ei = letters.end(); i != ei; ++i)

cout << *i << ;

vector<char> letters = { 'L', 'T', 'S"' };
for (auto it = nrs.rbegin(), endIt = nrs.rend(); it!= endIt; ++it)
cout << *it << " ";

Can you spot any issues with
i ?
this code? Old code forgotten during refactoring.

Induction variable has different name

OUTPUT

STL

STL

C-style iteration vs STL Iterators
=] Reuse existing code so that is prints letters in reverse order.

CODE

vector<char> letters = { 'S', 'T',
for (auto letter : letters)
cout << letter << " ";

vector<char> letters = { 'L', 'T’",
for (auto letter : reverse(letters))
cout << letter << " ";

No issues herel

ILI

ISI

The range-for way

}s

}s

OUTPUT

STL

STL

reverse() is an iterator adapter,
which we’ll introduce shortly

Iterate a collection in reverse order

std: :vector<int> wvalues;
C style:

for (int i1 = wvalues.size() - 1; i >= 0; --1)
cout << wvalues[i] << endl;

C++98:
for (vector<int>::reverse iterator it = v.rbegin(); it != v.rend(); ++it)
STL + Lambdas:

for each(values.rbegin()), values.rend(),
[] (const string & val) { cout << wval << endl; });

Modern C++ range-for, using iterator adapter:

for (auto & val : reverse(values)) { cout << wval << endl; }

Iterate a collection in reverse order C++ 20

C++ 20 ranges coming soon to your compiler of choice:

for (auto & val : ranges::reverse view(values))

{

cout << wval << endl;

}

C++ 20

C++ 20 ranges are a major feature to the language

Here’s a peek of what they enable:

vector<int> ints { 0, 1, 2, 3, 4, 5};

auto isEven = [](int 1) { return 1 % 2 == 0; };
auto toSquare = [] (int i) { return i * i; };
for (int 1 : ints | views::filter (isEven) | views::transform(toSquare))

{
std: :cout << 1 << " ',

}

PRINTS: 048

Iterator Adaptors

Iterate a collection in reverse order

namespace detail

{
template <typename T>
struct reversion wrapper

{

T & mContainer;

b

/**
* Helper function that constructs
* the appropriate iterator type based on ADL.
*/
template <typename T>
detail::reversion wrapper<T> reverse (T && aContainer)

{

return { aContainer };

Iterator Adaptors

Iterate a collection in reverse order

namespace std

{

template <typename T>
auto begin(detail::reversion wrapper<T> aRwrapper)

{

return rbegin (aRwrapper.mContainer);

template <typename T>
auto end(detail::reversion wrapper<T> aRwrapper)

{

return rend (aRwrapper.mContainer);

° Iterator Adaptors

-
Q!Fl' Homework:
Iterate through an associative container keys or values

first second first second

std::unordered map<string, int> weights; // container value types are <key, value> pairs

// fill some weights in the map and compute the total

int totalWeight = 0;

for (auto & val : iterate_second(weights)) { totalWeight += val; }

Using the same technique shown for reverse () iteration adaptor,
implement this helpful iterate second () adaptor.

Can you replace the range-for with an STL algorithm ?
https://en.cppreference.com/w/cpp/algorithm

Email solutions to: pca@caphyon.com

Function Objects Basics

template<class InputlIt, class UnaryFunction>
void std:: for each(InputIt first, InputIt last, UnaryFunction func)
{
for(; first != last; ++first)
func(*first);

}

struct Printer // our custom functor for console output

{

void operator () (const std::string & str)

{
std::cout << str << std::endl;

}
Y

std::vector<std::string> vec = { "STL", "function", "objects", "rule" };

std::for each(vec.begin(), vec.end(), Printer()):;

Lambda Functions

struct Printer // our custom functor for console output

{

void operator () (const string & str)

{
cout << str << endl;

}
}r

std::vector<string> vec = { "STL", "function", "objects",

std::for_ each(vec.begin(), vec.end(), Printer());

// using a lambda

std::for each(vec.begin(), vec.end(),

"rule"

[] (const string & str) { cout << str << endl; 1});

Y

Lambda Functions

[capture-1ist 1 (params) mutable -> ret { body }

(optional)

[capture-1list 1 (params) => ret { body }
[capture-1list 1 (params) { body }

[capture-1ist] { body }

Capture list can be passed as follows :

m [a, &b] where a is captured by value and b is captured by reference.

m [this] captures the this pointer by value

m [&] captures all automatic variables used in the body of the lambda by reference
m [=] captures all automatic variables used in the body of the lambda by value

m [] captures nothing

Anatomy of A Lambda
Lambdas == Functors

params) ->ret {statements; }

class __functor {

CaptureTypes __captures;
public:
__functor(CaptureTypes captures)
:__captures(captures) { }

auto operator() (params) -> ret
{ statements; }
L

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOAS8

Anatomy of A Lambda

Capture Example

{ f(cL, c2);)

class __ functor {
private:
Cl_cl; C2&_c2;
public:
__functor{Cl1cl, C2& c2)

i _clfcl), _c2(c2){}

void operator()() {fl _c1,_¢c2);}

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOAS8

Anatomy of A Lambda

Parameter Example

m (P1pl, const P2& p2) { f(pl,p2);}

class __functor {

public:

void operator()(P1 p1, const P2& p2) {
f(p1,p2);
}

L
credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOAS8

Lambda Functions

std::list<Person> members = {...};
unsigned int minAge = GetMinimumAge () ;

members.remove if([minAge] (const Person & p) { return p.age < minAge; });

https://cppinsights.io

Lambda Functions

std::list<Person> members = {...};
unsigned int minAge = GetMinimumAge () ;

members.remove if([minAge] (const Person & p) { return p.age < minAge; });

{

// compiler generated code:

struct Lambda 247

{
Lambda 247 (unsigned int minAge) : minAge(minAge) {}
bool operator () (const Person & p) { return p.age < minAge; }
unsigned int minAge;

)

members . remove if (Lambda 247 (minAge));

https://cppinsights.io

Prefer Function Objects or Lambdas to Free Functions

vector<int> v = { .. };

bool GreaterInt(int i1, int 12) { return 11 > 12; }

sort (v.begin(), v.end(), GreaterInt); // pass function pointer
sort (v.begin(), v.end(), greater<>()):

sort (v.begin(), v.end(), [](int il, int i2) { return il > i2; });

WHY ?

Function Objects and Lambdas leverage operator() inlining
VS.
indirect function call through a function pointer

This is the main reason std::sort() outperforms qsort() from C-runtime by at least 500% in typical
scenarios, on large collections.

STL Algorithms - Principles and Practice

“Prefer algorithm calls to hand-written loops.”
Scott Meyers, "Effective STL"

Why prefer to use (STL) algorithms?

/
Goal: No Raw Loops {}

Sean Parent - C++ Seasoning, 2013

Whenever you want to write a for/while loop:

for(int 1 = 0;, 1 < v.size(), ++1) { ..

Put the Mouse Down and
Step Away from the Keyboard !

Burk Hufnagel

Why prefer to use (STL) algorithms?
Correctness

Fewer opportunities to write bugs like:

iterator invalidation

copy/paste bugs

iterator range bugs

loop continuations or early loop breaks
guaranteeing loop invariants

issues with algorithm logic

Code is a liability: maintenance, people, knowledge, dependencies, sharing, etc.

More code => more bugs, more test units, more maintenance, more documentation

Why prefer to use (STL) algorithms?

Code Clarity

Algorithm names say what they do.
Raw “for” loops don’t (without reading/understanding the whole body).

We get to program at a higher level of abstraction by using well-known verbs

(find, sort, remove, count, transform).
A piece of code is read many more times than it's modified.
Maintenance of a piece of code is greatly helped if all future programmers

understand (with confidence) what that code does.

Is simplicity a good goal ?

Simpler code is more readable code
Unsurprising code is more maintainable code

Code that moves complexity to abstractions often has less bugs
o corner cases get covered by the library writer

o RAIl ensures nothing is forgotten

Compilers and libraries are often much better than you (optimizing)

o they’re guaranteed to be better than someone who's not measuring

Kate Gregory, “It’'s Complicated”, Meeting C++ 2017

What does it mean for code to be simple ?

Easy to read
Understandable and expressive
Usually, shorter means simpler (but not always)

Idioms can be simpler than they first appear (because they are recognized)

Kate Gregory, “It's Complicated”, Meeting C++ 2017

Simplicity is Not Just for Beginners

Requires knowledge
o language / syntax
o idioms
o what can go wrong
o what might change some day

Simplicity is an act of generosity
o to others
o to future you

Not about leaving out
meaningful names
error handling
testing
documentation

O O O O

Kate Gregory, “It's Complicated”, Meeting C++ 2017

Why prefer to use (STL) algorithms?

Modern C++ (1ISO 14/17/20 standards)

e Modern C++ adds more useful algorithms to the STL library.
e Makes existing algorithms much easier to use due to simplified language syntax
and lambda functions (closures).

for (vector<string>::iterator it = v.begin(); it != v.end(); ++it) { ..
for (auto it = v.begin(); it !'= v.end(); ++it) { ..}

for (auto it = v.begin(), end = v.end(); it !'= end; ++it) { ..}

std: :for each(v.begin(), v.end(), [](const auto & val) { .. });

for (const auto & val : v) { .. }

Why prefer to use (STL) algorithms?

What's the }
Performance / Efficiency difference?

Vendor implementations are highly tuned (most of the time).

Avoid some unnecessary temporary copies (leverage move operations for objects).
Function helpers and functors are inlined away (no abstraction penalty).

Compiler optimizers can do a better job without worrying about pointer aliasing

(auto-vectorization, auto-parallelization, loop unrolling, dependency checking, etc.).

The difference between Efficiency and Performance

Why do we care ?
Because: “Software is getting slower more rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

Efficiency Performance
the amount of work you need to do how fast you can do that work
governed by your algorithm governed by your data structures

ﬁ Efficiency and performance are not dependant on one another.

Performance / Efficiency
Parallelize + Reduction C++ 1 7
(map/reduce)

C++17 supports parallel versions of the std::algorithms (many of them)

=> WOW ! It became really simple to write parallel code f&
Eg.

template< class Inputlt, class T >
InputIt find(InputIt first, InputIt last, const T& value);

template< class ExecutionPolicy, class ForwardIt, class T >
~ForwardIt find(ExecutionPolicy&& policy, ForwardIt first, ForwardIt last, const T& value);

Not so fast | Let’s see...

Parallel STL Algorithms C++ 17

ExecutionPolicy
e std::execution::seq
o same as non-parallel algorithm (invocations of element access functions are indeterminately
sequenced in the calling thread)
e std::execution::par
o execution may be parallelized (invocations of element access functions are permitted to execute in
either the invoking thread or in a thread created by STL implicitly)
o invocations executing in the same thread are indeterminately sequenced with respect to each other
e std::execution::par_unseq
o execution may be parallelized, vectorized, or migrated across threads (by STL)
o invocations of element access functions are permitted to execute:
m inan unordered fashion
m in unspecified threads

m unsequenced with respect to one another, within each thread

Parallel STL Algorithms

template<class Iterator>

size_t seq_calc_sum(Iterator begin, Iterator end)
{
size t x = 0;
std::for_each(begin, end, [&](int item) {
X += item;
1)

return x;

Parallel STL Algorithms C++ 17

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{
size_t x = 0;

std::for_each(std::execution::par, begin, end, [&](int item) {

X += item; <= data race; fast, but often causes wrong result!
})s
return x;

Parallel STL Algorithms C++ 17

template<class Iterator>
size_t par_calc_sum(Iterator begin, Iterator end)
{
size_t x = 0;
std: :mutex m;
std::for_each(std::execution::par, begin, end, [&](int item) {
std::lock guard<std::mutex> guard(m); <= ~90x slower than sequential version
X += item;
1)

return Xx;

Parallel STL Algorithms C++ 17

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{
std::atomic<size t> x = 0;
std::for_each(std::execution::par, begin, end, [&](int item) {

X += item; // or x.fetch_add(item); <= ~50x slower than sequential version

})s

return x;

Parallel STL Algorithms
Always Benchmark !

Don’t trust your instinct

Results
non- std::execution::par with std::execution::par with
Box
parallelized std::mutex std::atomic
#1 (4 physical,
41200+-900us (90x slower, 23400+-140us (50x slower,
8 logical 470+-4us
600x+ less power-efficient) 300x+ less power-efficient)
cores)
#2 (2 52500+-6000us (60x

25100+-4500us (30x slower,
physical, 4 900+-150us slower, 200x+ less power-

100x+ less power-efficient)
logical cores) efficient)

Parallel STL Algorithms

template<class RandomAccessIterator>

size_t par_calc_sum(RandomAccessIterator begin, RandomAccessIterator end)

{

// reduce the synchronization overhead by partitioning the load

constexpr int NCHUNKS = 128;

assert((end-begin) % NCHUNKS == 0); // for simplicity of slide code
const size t sz = (end - begin) / NCHUNKS; // size of a chunk

RandomAccessIterator starts[NCHUNKS]; // start offsets for all chunks
for (int i = @; i < NCHUNKS; ++i)
{

starts[i] = begin + sz * i;
assert(starts[i] < end);

}

std::atomic<size_t> total = 0;

std::for_each(std::execution::par, starts, starts + NCHUNKS, [&](RandomAccessIterator s)

{
size_t partial_sum = 0;
for (auto it = s; it < s + sz; ++it)
partial_sum += *it; // NO synchronization (COLD)

total += partial_sum; // synchronization (HOT)

1)

C++ 17

return total; Almost 2x FASTER than sequential version

(on 8 core CPU)

Parallel STL Algorithms C++ 17

std: :reduce()

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{

return std::reduce(std::execution::par, begin, end, (size_ t)0);
std::reduce() —justlike our partial sums code — exploits the fact that operation which is used for reduce
(default: +) is associative.

template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOp>

T reduce(ExecutionPolicy && policy, ForwardIt first, ForwardIt last, T init, BinaryOp binary op);

~3% faster than our manual implementation
(on 8 core CPU) https://en.cppreference.com/w/cpp/algorithm/reduce

Parallel STL Algorithms C++ 17

TL;DR: std::reduce() rulezz!

Pretty much all other parallel algorithms are difficult to use properly:
- safe (no data races)
- with good performance results
(on traditional architectures; exception NUMA/GPGPU)

- don’t trust your instinct: Always Benchmark !

’\
=3 E{ Practical Code

Practical Code
Source: Advent of Code 2019, day 22

Given a deck of playing cards, implement the following operations:
1. DealNew() Take all cards (from front) of deck and insert them into the front of a new card deck

2. Cut(int N) N > 0: Take N cards from the deck front and insert them to the deck back

N < 0: Take N cards from the deck back and insert them to the deck front

ﬁf Practical Code

DealNew () Take all cards (from front) of deck and insert them into the front of a new card deck

vector<Card> DealNew(const vector<Card>& deck)

{

vector<Card> newDeck = deck;

for (int i = @; i < deck.size(); ++i)
newDeck[deck.size() - i - 1] = deck[i];

return newDeck;

}

We can do better

ﬁf Practical Code

DealNew () Take all cards (from front) of deck and insert them into the front of a new card deck

vector<Card> DealNew(const vector<Card>& deck)

{

vector<Card> newDeck;
for (auto & c : deck)
newDeck.insert(begin(newDeck), c);

return newDeck;

}

We can do better still

ﬁJT Practical Code

DealNew () Take all cards (from front) of deck and insert them into the front of a new card deck

vector<Card> DealNew(const vector<Card>& deck)

{
vector<Card> newDeck = deck;

reverse(begin(newDeck), end(newDeck));

return newDeck;

}

ﬁf Practical Code

reverse(begin(newDeck), end(newDeck));

e FEasytoread. Averb

e Does what it says

e Not fiddling around with indices

e Afast, tested and proven STL algorithm

e Bonus: Shorter

N > 0: Take N cards from the deck front and insert them to the deck back

Cut (int N)

N < 0: Take N cards from the deck back and insert them to the deck front

ﬁf Practical Code

Cut (int N) N > 0: Take N cards from the deck front and insert them to the deck back

N < 0: Take N cards from the deck back and insert them to the deck front

vector<Card> Cut(const vector<Card> & v, int n)

{

/...

ﬁﬂf Practical Code

Cut (int N) N > 0: Take N cards from the deck front and insert them to the deck back

N < 0: Take N cards from the deck back and insert them to the deck front

vector<Card> Cut(const vector<Card> & deck, int n)

{
vector<Card> cutDeck(deck.size());
if (n > 0) else
{ {
for (int i = 0; i < n; ++1i) n = a?s(n); .
cutDeck[v.size() - n + i] = deck[i]; for (int 1 = ©; 1 < n; T+1) .
for (int i = @; i < deck.size() - n; ++i) cutDeck[i] = deck[v.size() - n + 1i];
cutDeck[i] = deck[i + n]; for (int 1 = n; i < deck.size(); ++i)
cutDeck[i] = deck[i - n];
} else - }
return cutDeck;
}

We can do better

- Practical Code

Cut (int N) N > 0: Take N cards from the deck front and insert them to the deck back

N < 0: Take N cards from the deck back and insert them to the deck front

vector<Card> Cut(const vector<Card> & deck, int n)

{
auto cutDeck = deck;
if (n > Q)
rotate(cutDeck.begin(), cutDeck.begin() + n, cutDeck.end());
else

rotate(cutDeck .rbegin(), cutDeck.rbegin() - n, cutDeck.rend());

return cutDeck;

=3 E Practical Code

for (int i = @; 1 < n; ++i) . rotate(cutDeck.begin(),
cutDeck[v.size() - n + i] = deck[i]; VS cutDeck.begin() + n,
for (int i = @; i < deck.size() - n; ++i) cutDeck.end());

cutDeck[i] = deck[i + n];
e FEasytoread.Averb
e Fast to write without errors
e Does what it says
e Not fiddling around with indices
e Afast, tested and proven STL algorithm
e |t can work in-place on collections

e Bonus: Shorter

—J|I" Practical Code }

@
k_/_ Homework Comparative Reviews

F

You have a large collection of proposals for a conference.
As the organizer, you are tasked with devising an evaluation system for submissions.

Your strategy: ask all reviewers to rank proposals against each other.

Email solutions to pca@caphyon.com

@
k_/_ Homework Comparative Reviews

F

Devise a program that will repeatedly show 3 randomly chosen proposals to the reviewer, asking
them to rank comparatively: 1,2,3 | 1,3,2 | 2,1,3 | etc

This cycle runs forever (continuously showing 3 random proposals), until the reviewer is satisfied that
they ranked enough submissions.

Note that proposals may show up multiple times, in different combinations with each other and must
be ranked in that context.

Compute the final ranking of ALL proposals (eg. Top 100) based on the votes from all reviewers, after
they all finished the evaluation.

Email solutions to pca@caphyon.com

Homework

Comparative Reviews

Read the anonymised previews, below, and decide on a ranking between them. Then click the
headers in the order of your ranking (click your favourite one first). If you make a mistake or
change your mind, click a ranked header again to unrank it.

Your rankings will not be visible to anyone, except the administrators.

o The C++ rvalue lifetime disaster

Rvalue references have been with us since C++11. They have originally been
introduced to make moving objects more efficient: the object an rvalue reference
references is assumed to go out of scope soon and thus may have its resources
scavenged without harm. The C++ standard library, for example std:cref or
std:ranges, makes use of yet another aspect of rvalue references: since they go
aut of scope soon. it is assumed unsafe to hold on to them beyond the scope of
the current function, while lvalue references are considered safe. We, too, found
this assumption to be very useful for smart memory management, in particular
in generic code. Unfortunately, the C++ language itself violates this assumption in
at Least two places. First, rvalues bind to consts. This means that innocent-
looking functions taking a parameter by const& and passing it through in some
way silently convert rvalues to lvalue references, hiding any lifetime limitation of
the rvalues. std:min/max are two such examples. Worse still, every accessor
member function returning a consté to a member suffers from this problem.
Second, temporary lifetime extension is meant to make binding a temporary to a
reference safe by extending the lifetime of the temporary. But this only works as
long as the temporary is still a prvalue. If the temporary has been passed
through a function, even it has been correctly passed through by rvalue
reference, lifetime extension will no longer be invoked and we get a dangling
reference. These problems are not merely theoretical. We have had hard-to-find
memory corruption in our code because of these problems. In this talk, | will
describe the problems in detail. present our library-only approach to mitigate the
problems, and finally, make an impossible-to-ever-get-into-the-standard proposal
of how to put things right.

60mins (or |60 min

Outline

I am planning a digestible version of this paper: https://github.com/think-
cell/fixing_references/blob/master/paper.md with the addition of - examples,
particularly range-related - library-only macro trickery that we use in our code to
mitigate the problem - a more exhaustive exploration of the design space,
including some feedback | received from German ISO committee members | hope
for controversial discussion after the talk-)

Email solutions to pca@caphyon.com

- You have submitted 101 reviews (and skipped 6) -

° Writing .NET Core Cross Platform Profiler

NET supports injecting an instrumentation profiler. built as a C++ COM
component, that can be loaded into any NET process. With NET Core, the profiler
mechanism is extended to work on non-Windows platforms as well. We'l build a
simple, vet functional, cross-platform NET Core profiler and run it on Windows
and Linux.

Gomins or S0mins) (R

o C++ Parallel Programming Models

Modern C++ offers a wealth of parallel programming facilities. Those facilities
belong to 3 different programming models: unstructured, task-based and data
parallel. The unstructured model (or rather, non-model) contains the basic
building blocks - threads, atomics, mutex etc. The task-based model contains
async, future and related classes. The data parallel model, recently introduced in
C++17, contains the various parallel algorithms. The 3 models aren't just different
abstraction levels - each is appropriate for a different program structure.

This talk will review the 3 models, describe the central facilities used by each
model, and discuss the expected use cases for each one. Since many of the
parallelism facilities have been added to the language in C++11, the talk will not
focus on the facilities themselves but rather put them in the context of a
programming model. The talk will, however, include new C++17 and expected
C++20 features, where appropriate.

Outline

Rough outline:

1. Why parallel programming, why programming model

2. Unstructured model - low-level facilities (mostly) introduced in C++11. Won't go
into the complex memory model details.

3. Task based model - the concept of tasks, the current state in C++ and a bit
about their future (can't avoid using that word, no pun intended..)

4. Data parallelism - parallel algorithms and their execution policies

5. Models comparison and mixing models

The talk doesnit go into the low-level details, partially because that's the purpose
of a higher-level programming model.

Homework

Comparative Reviews

Read the anonymised previews, below, and decide on a ranking between them. Then click the
headers in the order of your ranking (click your favourite one first). If you make a mistake or
change your mind, click a ranked header again to unrank it.

Your rankings will not be visible to anyone, except the administrators.

a The C++ rvalue lifetime disaster

Rvalue references have been with us since C++11. They have originally been
introduced to make moving objects more efficient: the object an rvalue reference
references is assumed to go out of scope soon and thus may have its resources
scavenged without harm. The C++ standard library, for example std:cref or
std:ranges, makes use of yet another aspect of rvalue references: since they go
out of scope soon, it is assumed unsafe to hold on to them beyond the scope of
the current function, while lvalue references are considered safe. We, too, found
this assumption to be very useful for smart memory management, in particular
in generic code. Unfortunately, the C++ language itself violates this assumption in
at Least two places. First, rvalues bind to consts. This means that innocent-
looking functions taking a parameter by const& and passing it through in some
way silently convert rvalues to value references, hiding any lifetime limitation of
the rvalues. std:min/max are two such examples. Worse still, every accessor
member function returning a consts to a member suffers from this problem.
Second, temporary lifetime extension is meant to make binding a temporary to a
reference safe by extending the lifetime of the temporary. But this only works as
long as the temporary is still a prvalue. If the temporary has been passed
through a function, even it has been correctly passed through by rvalue
reference, lifetime extension will no longer be invoked and we get a dangling
reference. These problems are not merely theoretical. We have had hard-to-find
memory corruption in our code because of these problems. In this talk, I will
describe the problems in detail, present our library-only approach to mitigate the
problems, and finally, make an impossible-to-ever-get-into-the-standard proposal
of how to put things right.

somins (or comins) (EHEIREE)

Outline

1am planning a digestible version of this paper: https://github.com/think-
cell/fixing_references/blob/master/paper.md with the addition of - examples,
particularly range-related - library-only macro trickery that we use in our code to
mitigate the problem - a more exhaustive exploration of the design space,
including some feedback | received from German ISO committee members | hope
for controversial discussion after the talk")

- You have submitted 101 reviews (and skipped 6) -

O © - e rogmmmng o

\NET supports injecting an instrumentation profiler. built as a C++ COM
component, that can be loaded into any .NET process. With .NET Core, the profiler
mechanism is extended to work on non-Windows platforms as well. We'll build a
simple, yet functional, cross-platform NET Core profiler and run it on Windows
and Linux

ive or 0mine) (D

Email solutions to pca@caphyon.com

Modern C++ offers a wealth of parallel programming facilities. Those facilities
belong to 3 different programming models: unstructured, task-based and data
parallel. The unstructured model (or rather, non-model) contains the basic
building blocks - threads, atomics, mutex etc. The task-based model contains
async, future and related classes. The data parallel model, recently introduced in
C++17, contains the various parallel algorithms. The 3 models aren't just different
abstraction levels - each is appropriate for a different program structure

This talk will review the 3 models, describe the central facilities used by each
model, and discuss the expected use cases for each one. Since many of the
parallelism facilities have been added to the language in C++11, the talk will not
focus on the facilities themselves but rather put them in the context of a
programming model. The talk will, however, include new C++17 and expected
C++20 features, where appropriate.

LT -cvanced

Outline

Rough outline:

1. Why parallel programming, why programming model

2. Unstructured model - low-level facilities (mostly) introduced in C++11. Won't go
into the complex memory model details.

3. Task based model - the concept of tasks, the current state in C++ and a bit
about their future (can't avoid using that word, no pun intended...)

4. Data parallelism - parallel algorithms and their execution policies

5. Models comparison and mixing models

The talk doesnit go into the low-level details, partially because that's the purpose
of a higher-level programming model.

@
#_/_ Homework Comparative Reviews

F

Get your conference proposal data from
https://cpponsea.uk/news/announcing-speakers-for-2020.html

The program loop will run for each of the reviewers, until they are each satisfied / tired
with their ranking work

After the program is done executing, save the proposal ranking in ranking.out file

Email solutions to pca@caphyon.com

Homework Comparative Reviews: Prototype

Ranking started. User: Gabriel
Rank with 123, 132, 213, 231, 312, 321

. 1. Adi Shavit - Coroutine X-Rays and Other Magical Superpowers
first set 2. Dawid Zalewski - Structured bindings uncovered
to rank 3. Kevlin Henney - Lambda? You Keep Using that Letter

Rank: 132

1. Luna Kirkby - Mind the Bear Traps!

second set 2. Timur Doumler - Real-time STL
to rank 3. Adi Shavit - Coroutine X-Rays and Other Magical Superpowers

Rank: 312,

Email solutions to pca@caphyon.com

@
=/

Homework

Comparative Reviews: Prototype

[proposals.txt E3 [ranking.out £3
1 Adi shavit - Coroutine X-Rays and Other Magical Superpowers 1 Dawid Zalewski - Structured bindings uncovered
2 A.J. Orians - Improving Readability With Class Template Argument Deduction 2 Hendrik Niemeyer - An Introduction to C++20’s Concepts
3 Alexander Maslennikov - Algorithmic and microarchitecture optimizations of C++ applications 3 Victor Ciura - Avoid Success at All Costs
4 nAnastasiia Kazakova - C++ ecosystem: the renaissance edition 4 JeanHeyd "ThePhD" Meneide - Burning Silicon: Speed for Transcoding in C++23
5 Anders Schau Knatten - Just Enough Assembly for Compiler Explorer 5 Jonathan Milller - Using C++20's Three-way Comparison <=>
6 Andrzej Warzynski - How compilers work: introduction to LLVM passes 6 Anders Schau Knatten - Just Enough Assembly for Compiler Explorer
I Ansel Sermersheim and Barbara Geller - Refactoring Undefined Behavior using Any, Variant, and Optional from C+ 7 Tony Van Eerd - An Introduction to Lock-free Programming
8 Arnaud Desitter - Reducing Memory Allocations in a Large Ct++ Application g Bjorn Fahller - What Do You Mean by "Cache Friendly"?
9 Arne Mertz - Phantastic Code Smells and Where to Find Them 9 Adi Shavit - Coroutine X-Rays and Other Magical Superpowers
10 Arno Schoedl - From Iterators To Ranges The Upcoming Evolution Of the Standard Library 10 Neil Horlock - No more secrets? Why your secrets aren't safe and what you can do about it.
11 Bjorn Fahller - What Do You Mean by "Cache Friendly"? 11 Patrick Mintram - Debugging Concepts 101
12 Boguslaw Cyganek - How accurate we are? A refresher on the floating-point computations and the standard librar|| 12 Pavel Novikov - Serialization in C++ has never been easier! But wait, there's more...
13 Clare Macrae - Quickly Testing Legacy C++ Code with Approval Tests 13 Fergus Cooper - C++20: All the small things
14 Danila Kutenin - C++ STL best and worst performance features and how to learn from them 14 Fred Tingaud - Clang-based Refactoring, or How to Refactor Millions of Line of Code Without Alienating your C|
Dawid Zalewski - Structured bindings uncovered 15 Ansel Sermersheim and Barbara Geller - Refactoring Undefined Behavior using Any, Variant, and Optional from C
Fergus Cooper - C++20: All the small things 16 Arnaud Desitter - Reducing Memory Allocations in a Large C++ Application
Fred Tingaud - Clang-based Refactoring, or How to Refactor Millions of Line of Code Without Alienating your Co 17 Arne Mertz - Phantastic Code Smells and Where to Find Them
Hendrik Niemeyer - An Introduction to C++20’s Concepts 8 James Pascoe - Combining Modern C++ and Lua
James Pascoe - Combining Modern C++ and Lua 19 Alexander Maslennikov - Algorithmic and microarchitecture optimizations of C++ applications
JeanHeyd "ThePhD" Meneide - Burning Silicon: Speed for Transcoding in C++23 20 Shachar Langbeheim - Data-Oriented Design for Object-Oriented Programmers
Jonathan Miller - Using C++20's Three-way Comparison <=> ! Jon Kalb - Best Practices for Object-Oriented Programming
Jon Kalb - Best Practices for Object-Oriented Programming Arno Schoedl - From Iterators To Ranges The Upcoming Evolution Of the Standard Library
Juan Pedro Bolivar Puente - Squaring the circle: value-oriented design in an object-oriented system Juan Pedro Bolivar Puente - Squaring the circle: value-oriented design in an object-oriented system
Kate Gregory - Naming is Hard: Let's Do Better 4 Kate Gregory - Naming is Hard: Let's Do Better
Kevlin Henney - Lambda? You Keep Using that Letter 25 Kevlin Henney - Lambda? You Keep Using that Letter
Luna Kirkby - Mind the Bear Traps! 26 Luna Kirkby - Mind the Bear Traps!
27 Mateusz Pusz - Rethinking the Way We Do Templates in C++ even more 27 Mateusz Pusz - Rethinking the Way We Do Templates in C++ even more
28 Matt Godbolt - Correct by Construction: APIs That Are Easy to Use and Hard to Misuse 28 Matt Godbolt - Correct by Construction: APIs That Are Easy to Use and Hard to Misuse
29 Neil Horlock - No more secrets? Why your secrets aren't safe and what you can do about it. 29 A.J. Orians - Improving Readability With Class Template Argument Deduction
30 Patrick Mintram - Debugging Concepts 101 30 Rainer Grimm - Concepts in C++20: A Evolution or a Revolution?
31 Ppavel Novikov - Serialization in C++ has never been easier! But wait, there's more... 31 Viet Le - Packaging and distributing C++ for fun and profit
32 Rainer Grimm - Concepts in C++20: A Evolution or a Revolution? 32 Vittorio Romeo - C++11/14 at scale - what have we learned?
33 Sandor Dargo - Undefined behaviour in the STL 33 Sandor Dargo - Undefined behaviour in the STL
34 Shachar Langbeheim - Data-Oriented Design for Object-Oriented Programmers 34 Yuri Minaev - Paranoid's take on C++ code review
35 Sy Brand - Live Compiler Development with Cross-Platform Tooling 35 Andrzej Warzynski - How compilers work: introduction to LLVM passes
36 Timur Doumler - Real-time STL 36 Anastasiia Kazakova - C++ ecosystem: the renaissance edition
7 Tina Ulbrich and Niel Waldren - Pythonic C++ 37 Sy Brand - Live Compiler Development with Cross-Platform Tooling
38 Tony Van Eerd - An Introduction to Lock-free Programming 38 Timur Doumler - Real-time STL
39 Victor Ciura - Avoid Success at All Costs 39 Tina Ulbrich and Niel Waldren - Pythonic C++
40 Viet Le - Packaging and distributing C++ for fun and profit 40 Boguslaw Cyganek - How accurate we are? A refresher on the floating-point computations and the standard libra
41 Vittorio Romeo - C++11/14 at scale - what have we learned? 41 Clare Macrae - Quickly Testing Legacy C++ Code with Approval Tests
42 Yuri Minaev - Paranoid's take on C++ code review 42 Danila Kutenin - C++ STL best and worst performance features and how to learn from th

Email solutions to pca@caphyon.com

See you in 2 weeks...

Don’t forget about your assignments

@
(.
A

Homework

Email solutions to pca@caphyon.com

